51 research outputs found

    Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification Systems

    Full text link
    The availability of large-scale chest X-ray datasets is a requirement for developing well-performing deep learning-based algorithms in thoracic abnormality detection and classification. However, biometric identifiers in chest radiographs hinder the public sharing of such data for research purposes due to the risk of patient re-identification. To counteract this issue, synthetic data generation offers a solution for anonymizing medical images. This work employs a latent diffusion model to synthesize an anonymous chest X-ray dataset of high-quality class-conditional images. We propose a privacy-enhancing sampling strategy to ensure the non-transference of biometric information during the image generation process. The quality of the generated images and the feasibility of serving as exclusive training data are evaluated on a thoracic abnormality classification task. Compared to a real classifier, we achieve competitive results with a performance gap of only 3.5% in the area under the receiver operating characteristic curve.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Deep Learning-based Anonymization of Chest Radiographs: A Utility-preserving Measure for Patient Privacy

    Full text link
    Robust and reliable anonymization of chest radiographs constitutes an essential step before publishing large datasets of such for research purposes. The conventional anonymization process is carried out by obscuring personal information in the images with black boxes and removing or replacing meta-information. However, such simple measures retain biometric information in the chest radiographs, allowing patients to be re-identified by a linkage attack. Therefore, there is an urgent need to obfuscate the biometric information appearing in the images. We propose the first deep learning-based approach (PriCheXy-Net) to targetedly anonymize chest radiographs while maintaining data utility for diagnostic and machine learning purposes. Our model architecture is a composition of three independent neural networks that, when collectively used, allow for learning a deformation field that is able to impede patient re-identification. Quantitative results on the ChestX-ray14 dataset show a reduction of patient re-identification from 81.8% to 57.7% (AUC) after re-training with little impact on the abnormality classification performance. This indicates the ability to preserve underlying abnormality patterns while increasing patient privacy. Lastly, we compare our proposed anonymization approach with two other obfuscation-based methods (Privacy-Net, DP-Pix) and demonstrate the superiority of our method towards resolving the privacy-utility trade-off for chest radiographs.Comment: Accepted at MICCAI 202

    Detection of Large Vessel Occlusions using Deep Learning by Deforming Vessel Tree Segmentations

    Full text link
    Computed Tomography Angiography is a key modality providing insights into the cerebrovascular vessel tree that are crucial for the diagnosis and treatment of ischemic strokes, in particular in cases of large vessel occlusions (LVO). Thus, the clinical workflow greatly benefits from an automated detection of patients suffering from LVOs. This work uses convolutional neural networks for case-level classification trained with elastic deformation of the vessel tree segmentation masks to artificially augment training data. Using only masks as the input to our model uniquely allows us to apply such deformations much more aggressively than one could with conventional image volumes while retaining sample realism. The neural network classifies the presence of an LVO and the affected hemisphere. In a 5-fold cross validated ablation study, we demonstrate that the use of the suggested augmentation enables us to train robust models even from few data sets. Training the EfficientNetB1 architecture on 100 data sets, the proposed augmentation scheme was able to raise the ROC AUC to 0.85 from a baseline value of 0.56 using no augmentation. The best performance was achieved using a 3D-DenseNet yielding an AUC of 0.87. The augmentation had positive impact in classification of the affected hemisphere as well, where the 3D-DenseNet reached an AUC of 0.93 on both sides.Comment: 7 pages. Accepted at BVM-Workshop 2022, Springe

    High-throughput mammalian two-hybrid screening for protein-protein interactions using transfected cell arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most of the biological processes rely on the formation of protein complexes. Investigation of protein-protein interactions (PPI) is therefore essential for understanding of cellular functions. It is advantageous to perform mammalian PPI analysis in mammalian cells because the expressed proteins can then be subjected to essential post-translational modifications. Until now mammalian two-hybrid assays have been performed on individual gene scale. We here describe a new and cost-effective method for the high-throughput detection of protein-protein interactions in mammalian cells that combines the advantages of mammalian two-hybrid systems with those of DNA microarrays.</p> <p>Results</p> <p>In this cell array protein-protein interaction assay (CAPPIA), mixtures of bait and prey expression plasmids together with an auto-fluorescent reporter are immobilized on glass slides in defined array formats. Adherent cells that grow on top of the micro-array will become fluorescent only if the expressed proteins interact and subsequently trans-activate the reporter. Using known interaction partners and by screening 160 different combinations of prey and bait proteins associated with the human androgen receptor we demonstrate that this assay allows the quantitative detection of specific protein interactions in different types of mammalian cells and under the influence of different compounds. Moreover, different strategies in respect to bait-prey combinations are presented.</p> <p>Conclusion</p> <p>We demonstrate that the CAPPIA assay allows the quantitative detection of specific protein interactions in different types of mammalian cells and under the influence of different compounds. The high number of preys that can be tested per slide together with the flexibility to interrogate any bait of interest and the small amounts of reagents that are required makes this assay currently one of the most economical high-throughput detection assays for protein-protein interactions in mammalian cells.</p

    Cell array-based intracellular localization screening reveals novel functional features of human chromosome 21 proteins

    Get PDF
    BACKGROUND: Trisomy of human chromosome 21 (Chr21) results in Down's syndrome, a complex developmental and neurodegenerative disease. Molecular analysis of Down's syndrome, however, poses a particular challenge, because the aneuploid region of Chr21 contains many genes of unknown function. Subcellular localization of human Chr21 proteins may contribute to further understanding of the functions and regulatory mechanisms of the genes that code for these proteins. Following this idea, we used a transfected-cell array technique to perform a rapid and cost-effective analysis of the intracellular distribution of Chr 21 proteins. RESULTS: We chose 89 genes that were distributed over the majority of 21q, ranging from RBM11 (14.5 Mb) to MCM3AP (46.6 Mb), with part of them expressed aberrantly in the Down's syndrome mouse model. Open reading frames of these genes were cloned into a mammalian expression vector with an amino-terminal His(6 )tag. All of the constructs were arrayed on glass slides and reverse transfected into HEK293T cells for protein expression. Co-localization detection using a set of organelle markers was carried out for each Chr21 protein. Here, we report the subcellular localization properties of 52 proteins. For 34 of these proteins, their localization is described for the first time. Furthermore, the alteration in cell morphology and growth as a result of protein over-expression for claudin-8 and claudin-14 genes has been characterized. CONCLUSION: The cell array-based protein expression and detection approach is a cost-effective platform for large-scale functional analyses, including protein subcellular localization and cell phenotype screening. The results from this study reveal novel functional features of human Chr21 proteins, which should contribute to further understanding of the molecular pathology of Down's syndrome

    Framework and baseline examination of the German National Cohort (NAKO)

    Get PDF
    The German National Cohort (NAKO) is a multidisciplinary, population-based prospective cohort study that aims to investigate the causes of widespread diseases, identify risk factors and improve early detection and prevention of disease. Specifically, NAKO is designed to identify novel and better characterize established risk and protection factors for the development of cardiovascular diseases, cancer, diabetes, neurodegenerative and psychiatric diseases, musculoskeletal diseases, respiratory and infectious diseases in a random sample of the general population. Between 2014 and 2019, a total of 205,415 men and women aged 19–74 years were recruited and examined in 18 study centres in Germany. The baseline assessment included a face-to-face interview, self-administered questionnaires and a wide range of biomedical examinations. Biomaterials were collected from all participants including serum, EDTA plasma, buffy coats, RNA and erythrocytes, urine, saliva, nasal swabs and stool. In 56,971 participants, an intensified examination programme was implemented. Whole-body 3T magnetic resonance imaging was performed in 30,861 participants on dedicated scanners. NAKO collects follow-up information on incident diseases through a combination of active follow-up using self-report via written questionnaires at 2–3 year intervals and passive follow-up via record linkages. All study participants are invited for re-examinations at the study centres in 4–5 year intervals. Thereby, longitudinal information on changes in risk factor profiles and in vascular, cardiac, metabolic, neurocognitive, pulmonary and sensory function is collected. NAKO is a major resource for population-based epidemiology to identify new and tailored strategies for early detection, prediction, prevention and treatment of major diseases for the next 30 years. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10654-022-00890-5

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    • …
    corecore